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High-resolution Spectroscopy at a Pulsed Neutron Source
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Inelastic Neutron Scattering Spectroscopy

Incident neutron Scagerer
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The S(Q,w) Map
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Trajectory in (Q,w) space
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Calculation of INS spectra,
the Scattering Law
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Di-hydrogen in Porous
Materials & Surfaces

Probing the interactions of H molecules
with the host material

Characterization of the interaction
strength




The Theory

wave\!ncllon I ‘ ! \ an! symmeu 1C I'OL[LOI’I&\ W&VC\!HCLOIL

°The first rotational state, (J/=1) orthohydrogen (0-H,) symmetric nuclear
spin wavefunction (1 1) and antisymmetric rotational wavefunction.

* Transitions p-H, <= o-H, are detected with neutrons because neutrons
exchange spin states with the H, molecule.

9

and have the rotational constant B with the same value that in gas phase
(B=59.6 cm™). Its energy levels are:

E=J-\J+1)B

The minimum separation between energy levels is

AE =28
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The Interactions

would do the trick, D, also works.
°A hindered H, rotor constrained to move in two dimensions.

"The potential that governs the motion of a H,

molecule on a surface may be expressed as

| a<l “!C IIIOLCU\G 1S COIISL&IIIG! mna p\ane !!!

case)
® The splitting between levels is 1B if a 1s large
and negative, because the energy levels are:
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The Energy Levels
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What are we expecting?
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Interaction of graphite with Hydrogen
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Interaction of graphite with Hydrogen
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H, in Cu-MOF #1

Franck Millange, Sam Callear, Richard Walton, Timmy Ramirez-Cuesta
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H, in Cu-MOF #1
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H, in Cu-MOF #1
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H, in Cu-MOF #1
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Character of H, adsorbed in
a redox-active Fe-containing
Metal-Organic Framework

Wendy Queen, Craig Brown, Timmy Ramirez-Cuesta
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Fig 2 Excess H, adsorption isotherms collected for
Fe2(dobdc) (green) and Fe,(O,)(dobdc) (black) at 77 K.
Filled and open circles represent adsorption and desorption,
respectively. Inset: Isosteric heats of adsorption (-Qst) plotted
as a function of adsorbed H, for both Fe,(dobdc) and the

oxidized analog.

Fig 1 [001] view of Fe,(dobdc) loaded with 2.25 D, / Fe?*. Orange,
gray, red spheres represent Fe, C, and O respectively. The box
contains a close up view of the framework wall, showing closest inter
D, / D, and D, / framework interactions (drawn as dotted lines)
%E the C?jmé Bl;g'ee D, sites, determined by powder neutron
lcjm 1a Q as I, I1, and III in order of binding strength.
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Normalized Counts

Energy Transfer (meV)

Fig. 3 INS spectra recorded at 20 K for loadings of 0.5 (black), 1.0

(green), 2.25 (orange), 3.0.(blue), and 3.75 (grey) p-H, / Fe?* in

Fe,(dobdc). The data were obtained following subtraction of the

spectrum of the evacuated framework.
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Thermal Stability of

porous structures
Al MIL 53

Collaboration:
Craig Brown, Timmy Ramirez-Cuesta
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Al-MIL 53 opening
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INS of MIL-

53 AL
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Figure 5. The comparison of the vibration frequency of MIL-53 at the LT phase obtained by the DFT

calculation and the neutron scattering experiments. The solid cycle represent the results measured by an

inelastic neutron scattering instrument, and the thick line is obtained with the DFT calculation.
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What drives the phase transition?

.- Look at all the modes in the solid
(Gamma point)

- Found the most anharmonic
- Solution of the Schrdédinger equation
- Negative modes

- Also seen in Cu BTC (Angewandte
Chemie International Edition, 49
(2010) 585)




PES for the anharmonic mode
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Energy Levels for the anharmonic modes
Open Structure

2000 - < 250

-1

5
Energy/meV

Energy/cm
S
3
|

I ! I ! I
-0.5 0.0 0.5
Displacement/A




™
<
o
N
<
N
P
©
-]
—
o)
)
L




Microporous Al-MOF
NOTT-300

Martin Schroeder,

Sihai Yang,

Sam Callear

Timmy Ramirez-Cuesta




Microporous Al-MOF
NOTT-300

1D pore channels
Pore size 6.5x6.5 A2
Pore volume 0.40 cc/g

Specific surface area
1800 m4/g




Neutron Energy Loss/cm”
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Neutron Energy Loss/cm™
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CO, in NOTT-300
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CO, in NOTT-300 Modelling

Neutron Energy Loss/cm”
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CO, in NOTT-300 Modelling
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CO, in NOTT-300 Modelling
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Unstable structures
Negative Modes
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Unstable structures
Negative Modes
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Selectivity and direct visualization of carbon
dioxide and sulfur dioxide in a decorated

porous host

Sihai Yang'*, Junliang Sun?, Anibal J. Ramirez-Cuesta®, Samantha K. Callear, Wil

am |. F. David®4,

Daniel P. Anderson’, Ruth Newby', Alexander J. Blake', Julia E. Parker®, Chiu C. Tang®

and Martin Schréder™

Understanding the mechanism by which porous solids trap harmful gases such as CO, and SO, is essential for the design

of new materials for their selective removal. Materi

s fun
because of their potential to form carbamates through HZN(F»

alized with amine groups dominate this field, largely
(50, interactions, thereby trapping CO, covalently.

However, the use of these materials is

impact. Here, we report a non-

gy-!
amine-containing porous solid (NOTT-300) in which hydruxyl groups wnthm pores bind CO2 and SO, selectively. In situ
with

powder X-ray diffraction and inelastic neutron studies,

reveal that hydroxyl groups

bind CO, and SO, through the formation of 0=C(S)=0(5"

-H(")-0 hydrogen bonds, which are reinforced by weak

supramolecular interactions with C-H atoms on the aromatic rings of the framework. This offers the potential for the

of new ‘easy y-off' capture systems for CO, and SO, that carry fewer economic and

environmental penalties.

lenge in the development of the ‘low-carbon economy’. At

present, solutions of organic amine are widely used to
capture the CO, generated by power plants, but the considerable
costs associated with the substantial energy input required for the
regeneration of the amine solutions, as well as their highly corrosive
nature, significantly limit their long-term application®*. Powerful
drivers therefore exist to develop efficient strategies to remove
CO, using alternative materials that simultaneously demonstrate
high adsorption capacity, high selectivity and high rates of regener-
ation at an economically viable cost.

Porous metal-organic framework (MOF) complexes® are a sub-
class of coordination polymers that show great promise for gas
storage and separation because of their high surface area and
tunable functional pore environment®'®. Within the field of gas
capture, there is particular emphasis on op the

The fficient removal of CO, and SO, represents a major chal-

prowde insights into the dynamics of the crystal lattice and gas mol-
ecules upon gas loading. Here, we report the novel application of
in situ inelastic neutron scattering (INS) combined with denmy
functional theory (DFT) calculations to permit direct vi

of the dynamics of the binding interaction between adsorbed XO,
(X=C, $) molecules and a metal-hydroxyl-functionalized porous
solid (NOTT-300) exhibiting high chemical and thermal stability,
as well as high selectivity and uptake capacity for CO, and SO,.
In addition, in situ high-resolution powder X-ray diffraction
(PXRD) has been used to probe the preferred binding sites for
both CO, and SO, molecules within NOTT-300.

These complementary experiments using dynamic and static
techniques lead to the same conclusion: the active hydroxyl
groups within the pore channels interact directly with CO, and
SO, through the formation of Al-OFF: (8)=0 hydrogen
bonds, d by weaker phenyl C-H--0=C($)=0 supra-

between the MOF hosts and the adsorbed gas molecules, leading to
the discovery of new functional materials with better capture prop-
erties'"1. Accordingly, the identification of preferred adsorption
sites within a pore structure and the direct visualization of

molecular contacts surrounding the pore (Fig. 1).

Results and discussion
Synthesis and transmission electron microscopy (TEM)

binding interactions represent important for under-
standing the mechanisms for the selective capture of CO, and SO,.

In situ single-crystal diffraction has been used previously to
determine the locations of CO, within an amine-functionalized
MOF, providing an invaluable structural rationale for its high
binding energy!*-'°. However, it is critical to the success of this tech-
nique that the MOF complex retains a high degree of crystallinity
upon inclusion and removal of guest molecules. This is usually dif-
ficult to achieve, particularly for those MOFs that feature extra-large
pore cavities'®. Furthermore, static crystallographic studies cannot

he  solvated  framework  complex
[Amox—x) (CoOuHYI(H,0), (NOTT-300-solvate) was prepared
by  hydrothermal reaction of H,L' (biphenyl-33'55'"
tetracarboxylic acid) and Al(NO})}-QHZO in water containing
HNO,, and was isolated as a microcrystalline material. TEM
images confirmed that the crystals have a uniform morphology
(~1 pm plates; Supplementary Fig. $7). Compared to traditional
methods for the production of MOF materials, the synthetic
conditions developed here for NOTT-300-solvate can be viewed
as constituting a green synthesis'”, not only because no organic

*School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK, *College of Chemistry and Molecular Engineering, Peking
University, Beijing, 100871, China, *ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK, *Inorganic Chemistry Laboratory,
University of Oxford, South Parks Road, OX1 3QR, UK, *Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 ODE, UK.

*e-mail: Siha. uk; M uk
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Conclusions

INS is a technique ideally suited to study hydrogen containing
materials.

The rotational line of hydrogen can be use to determine the
interaction of the hydrogen molecule with porous materials
and the nature of the adsorption site.

Zeolites and MOF’ s show a very strong interaction with
molecular hydrogen. For some applications they may be

tailored as hydrogen storage materials.

INS can look at the adsorption of non-hydrogenous materials
when the substrate contains hydrogen by the changes
induced by the adsorbed species

Computer modelling is crucial in understanding the
experimental results.

When the experiments match the experiment, the conclusions
from theory can be trusted.

The stability of structures depends on the quantum nature of
the motion, this can be important at low frequency modes
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